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Abstract. The l d n g  of time-dependent concepts with a neural network is studied analytically 
and numerically. The linearly separable target rule is represented by an N-vector, whose time 
dependence is modelled by a random or deterministic drift process. A single-layer network 
is mined online using different Hebb-like algorithms. Training is based on examples which 
are chosen randomly and according to a quely strategy. The evolution of the generaliwtion 
error can be calculated exactly in the thermodynamic limit N + m. The rule is never learnt 
perfectly, but can be tracked withiu a cettdn error margin. The generalization performance of 
various leaming rules is compared and simulations confirm the analytic results. 

1. Introduction 

A feedforward neural network [I] can serve as a tool for class$cation: it assigns an output to 
any possible input configuration. Leaming is the adaption of the network parameters aiming 
at the realization of a specific input-output relation. Typically, this relation is defined by an 
unknown classification scheme or rule, and the correct output is available only for certain 
example inputs. The extraction of the unknown concept by learning from these training 
examples is called generalization. 

So far the investigation of this attractive feature of neural networks has focused, 
in particul,ar, on the leaming of a fixed, given rule (e.g. [2,3]). Principally for the 
simplest feedforward system, the single-layer perceptron [4,5], several sophisticated training 
procedures have been studied, such as stochastic minimization of proper cost functions [ 2 , 9  
or deterministic iterative algorithms (e.g. [MI). These strategies would usually require the 
explicit storage of examples in a separate device, and the computational effort per example 
can be relatively high. 

In thii paper we address the more general problem of a network in a time-varying 
environment [lo-131, where the target rule changes during the process of learning. A 
natural approach to this kind of situation is,caNed online or real-time learning [I]. Assume 
axequence of novel input-output pairs is provided, each of which is used only once to 
adjust the parameters in the learning network (or student, for short). Its performance on 
previous examples is not taken into account by the learning procedure. Thus, the explicit 
storage of examples is not necessary. 

An illustrative example of such a situation is the sequence of items passing by on an 
assembly line, which have to be classified as 'okay' or 'defective'. Some of them have 
already been marked correctly by a teacher according to the quality reqilirements, which 
change in time. The student network is supposed to generalize, that is to classify the 
 unmarked products in good agreement with the current rule. 
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In the following we present an exactly solvable model for the online learning of drifting 
concepts. We consider a single-layer perceptron and various training algorithms. In section 
2 we describe this type of network, the training procedure, the target rule and two possible 
time dependences thereof. Section 3 deals with the first dependence, a random drift in 
rule space. We outline the solution in general and apply it to the simple Hebb rule, an 
algorithm optimal with respect to the achieved generalization, and the so-called perceptron 
algorithm. Furthermore, learning from queries rather than from randomly chosen examples 
is considered. The results for the Hebb rule have recently been reported in [13], but are 
included here for completeness. In the fourth section the corresponding analysis for a 
deterministically changing rule is given and the results are presented. The last section gives 
a brief summary and discussion. 

2. The model 

We study an exactly solvable model for the learning of a time-dependent rule with a single- 
layer perceptron. The network is represented by an N-dimensional weight vector J E RN, 
and for each input vector 5 E RN its output is given by 

SI(<) =sign ~~c~ . (1) 
( j : ,  1 

The perceptron is trained to implement a linearly separable target rule 

where B E EN is normalized to 1. The training process is based on examples consisting of 
input-output pairs (e!-', S, = &(E!-')), j~ = 1, . . . , p of the target rule. Instead of explicitly 
storing the entire set of training examples we study a class of Hebb-like algorithms [14,9] 
which use each example only once. After the presentation of the pth example the student 
vector is updated according to the rule 

Here hy is the internal field in the student network, hy = J" . E!-'. Each training example 
is weighted by a function f(& h:). An additional weight decay term -AJ,I"/N reduces 
the norm of the student vector at each learning step [I, 15,161. Every choice of f and 
the parameter A defines a specific algorithm. They allow us to introduce the effect of 
'forgetting' as will be explained later. Note that the components of both J and B are of 
order O(l/fi) .  

The quality of the network performance may be measured by the generalization error: 
the probability that a new, randomly drawn input is misclassified by the student. By 
geometrical arguments (e.g. 131) the generalization error of a simple perceptron is determined 
by the angle between the student and the teacher vector. It is given by the expression 

(4) 
1 

q p )  = -cos-] p 
7r 
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where p = R / Q  is the overlap of the two weight vectors, R = J . B ,  normalized by the 
length of the student vector, Q = m. An independently drawn, random J gives p = 0 
and thus cg = 1/2, which corresponds to randomly ‘guessing’ the output. 

Our specific goal is to calculate the generalization error for a linearly separable but 
time-dependent target function SE. The time dependence may be modelled by a teacher 
vector which changes after each learning step. We study two different types of such drift 
processes. First we consider a weight vector which perfoms a random walk on the N -  
dimensional unit sphere. As an exampIe of a deterministic drift, we study a teacher which 
seeks to minimize its overlap with the student vector. 

3. Learning a randomly varying rule 

We first consider the learning of  a rule, which changes according to a stochastic drift process. 
After each presentation of a training example p the weight vector of the target rule changes 
randomly subject to the conditions 

BA’+’ . B P  = 1 - 1 and B”+‘ .B’+’ = 1, (5) N 

The drift parameter v determines the angle between two consecutive teacher vectors, which 
for large N is given by e. It relates the time scales of the drift process and the 
presentation of training examples. For binary weights, Bi = H/&, condition (5) means 
that at each time step a finite number q/2 of randomly chosen bits is flipped. For non-integral 
values of q/2 this condition can only be satisfied on average, but in the thermodynamic 
limit ( N  4 CO) it is self-averaging. One may think of  the drift process as a fixed sequence 
of teacher vectors randomly drawn in advance, independently of the learning process. 

Using (5) and the learning rule (3) we obtain difference equations for the overlaps 
R’ = B ”  . J f i  and (Q”)’=J’  .J’, to order 1 / N  given by 

(6) 
2 

(Q’+’)2 - (e’”)’ = ;[f(S,, hf)h;S, + ifz(sfi, h;) - A(Q’)’I. 

 these equations have to be averaged over the distribution of training examples. The 
dependence on the training inputs is only through the internal fields hg = B’ . E” and 
h: = J” .(” which, For large N ,  att correlated Gaussian variables. If the components of 
the training inputs are drawn independently from a distribution with zero mean and unit 
variance, the joint distribution of h; and h; is given by 

Here and in the following we suppress the index p. In the thermodynamic limit (N + CO), 

we may furthermore assume that R and Q2 are self-averaging with respect to the averages 
over the training examples and different random walks [9,21]. We therefore replace them 
with their average values. 

In the same limit, (6) can be written as differential equations, if we introduce the 
continuous ,‘time’ ci = p / N ,  the number of training examples per weight learnt so far. 
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Note that this is only possible for the scaling of the drift parameter given in (5). If, for 
instance, the angle between two consecutive teacher vectors was of order 1, the drift term 
would dominate the behaviour of (6); no learning would be possible. If, on the other hand, 
the angle was of higher order in 1 / N ,  the drift would have no effect. Despite the 1 / N  
scaling of the drift parameter, learning the considered rule is not an easy task, because 
the average overlap of B with the initial vector decays exponentially fast on an a-scale, 
(B(a)  .B(O)) a e-%V. 

M Biehi and H Schwane 

We now get coupled differential equations for R and Q2 as functions of a 

dR 
d a  
_ -  - ( f ( S ,  h J h S )  - (A + 17)R(ff) 

(8) 

Here (. . .) denotes the average over the distribution (7). Instead of R one can also use the 
differential equation for the normalized overlap p,  given by 

-- d[Q21 - Z(f(S, hJ)h,S+ i f 2 ( S ,  h,))  - 2A.12'. 
d a  

For specific learning rules, defined by different choices of the weight function f and the 
parameter A, the average over (7) can be performed. The solution of the resulting differential 
equations finally yields the evolution of the generalization error and its asymptotic behaviour. 
This will be described in the following sections. 

3.1. The Hebb rule 

For the choice f ( h ~ ,  S) = 1 the general learning algorithm (3) reduces to the simple Hebb 
rule. In this case the averages in (8) can easily be performed yielding 

(10) da 

For the Hebb rule without weight decay (A = 0) the solution of (IO) is simply given by 

if we  assume an initially normalized student vector (Q(0) = l), which is uncorrelated to 
the teacher (R(0) = 0). For small values of a, the corresponding generalization error E&) 
decreases as shown in figure 1. However, if the drift parameter r) does not vanish, passes 
through a minimum and its asymptotic increase is given by % 1/2 - O ( l / a .  Hence, 
for long training times the networE~fails to generalize and randomly 'guesses' the output. 
Note that the asymptotic behaviour does not depend on the specific choice of the initial 
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Figure 1. Evolution of the generalization e m r  for the leaming of a randomly d r i f i g  concept 
with = 0.1 from independently drawn examples. Note the offset on the cg axis. The. leaming 
cnrves are shown for the Hebb rnle with A = 0 and with optimal weight decay respectively, 
for the’ simple perceptron algorithm (U = A = 0), and for learning with an optimal weight 
function f. Except for the lafier, simulations were performed for a system of N = 200 input 
neumns. Averages were calculated over 200 independent NW and the standard error bars would 
be approximately the size of the symbols. 

conditions. Even a student vector, which initially is perfectly aligned with the teacher, 
eventually loses all correlations (pm = 0). 

The reason for this failure is that the Hebb rule weights al l  the training examples with 
the same factor. It overemphasizes the old examples which contain little information about 
the current rule. As a result the norm of the student vector in (11) is unbounded for large 
a, while the overlap R to the teacher remains finite. 

More efficient learning rules adjust the attention paid to diKerent examples. As described 
in the following sections, this may he done hy a non-trivial choice of the weight function 
f. Here we study the effect of a simple weight decay A =- 0 on the generalization ability 
of the Hebb rule. For non-vanishing A, the solution of (10) remains finite for all a and the 
normalized overlap p shows an exponential approach to a stationary non-vanishing value, 
given by 

The stationary solution may be regarded as the ‘working phase’ of the network, which 
describes its performance after an initial training process. Therefore we are particularly 
interested in optimizing the network‘s generalization ability for a +, M. By adjusting the 
weight decay parameter A for a given drift q, we can maximize the asymptotic overlap (12) 
and obtain 

Figure 1 shows the evolution of the generalization error for a given value of q using the 
optimal weight decay Aopt. Simulations were performed for N = 200 and they confirm 
the results very well. In figure 2 the asymptotic generalization error for the optimal A is 
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plotted against the drift parameter q. For a very slowly drifting rule the q-dependence of 
the asymptotic error is given by 

M Biehl and H Schwarze 

Hence, employing weight decay in the Hebb rule dramatically improves the generalization 
ability for a time-dependent rule. Instead of an algebraic decay of the generalization ability, 
we find an exponential approach to a working phase with a finite overlap with the teacher. 
The weight decay isotropically reduces the length of the student vector before each learning 
step and weights the information about more recent locations of the teacher vector more 
strongly. Learning rules such as (3) have already been studied in the context of amactor 
networks working as 'forgetful memories' storing recently embedded patterns (e.g. [15,17- 
191). Here, forgetting unreliable old information allows the teacher to be followed to a 
certain degree, although a complete approach and therefore perfect generalization cannot be 
achieved due to the drift process. 

0.204 -I 

a. 

Figure 2. The asymptotic generalization error for the leaning of a randomly drifting concept 
as a function of the drift parameter. The upper four curves show Ihe dependence in the case of 
independently drawn examples for the Webb rule with optimal weight decay, simple percephon 
learning, perceptron leaming with optimized parameters x and k, and for the use of the optimal 
weight function. The full cume corresponds to the leaming from queries. 

3.2. The optimal weightfwlction f 

In the previous section it has been shown that the generalization performance of the simple 
Hehb rule can be greatly improved by suppressing the influence of old training examples 
using weight decay. A more general way of adjusting the attention payed to different 
examples is to introduce a non-trivial weight function f (S, h J )  in (3). An additional weight 
decay could formally be incorporated into the definition of f  as an explicit dependence upon 
(Y [15]. Therefore, we will restrict the following discussion to the case A. = 0. Each choice 
of f defines a different learning rule, and one would like to find a form, which yields 
the best possible generalization ability. Recently, Kinouchi and Caticha 191 considered an 
optimal choice o f f ,  which maximizes the decrease in generalization error per example or, 
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equivalently, maximizes dp/da. Taking the functional derivative of (9) one obtains for the 
optimal weight function 

f *  = S  h s - - h j  . (15) 

This form still depends on the internal fields hs in the teacher network, which are not 
observable during training except for their signs S. Therefore, Kinouchi and Caticha [9] 
suggest averaging f:p, over the distribution 

apt ( :  1 
,, 

(16) 
P(hs, hJ 10 ( S b )  

dhsP(hn,hJ)@(Shs) 
W s l S ,  h J )  = +ca 

-ca 

of hs  for given S and h~ , yielding 

where @(x) = I-: D t  and Dt = e-‘*/’dt/&. Note that fopt does not explicitly depend 
on the drift paiameter q. Using this weight function in (9) and performing the average over 
hJ yields a differential equation for p 

dp 1 (1 - p2)”’ 
_ = _  d a  2n p 1 s e x p [ - i ( l  @(P) +P’)x’] - w .  (18) 

This equation can be solved numerically, and the corresponding generalization error as a 
function of a is shown in figure 1. From the stationary solution of (18) the asymptotic 
generalization error e& + 00) can be obtained (figure 3). Its small-q behaviour is given 

-m 

bY 

which is a considerable improvement compared with the Hebb rule. However, in order to 
utilize the optimal weight function as given in (17), one needed to know p. the true overlap 
with the teacher. Since the teacher is unkoown, this quantity could only be estimated 
from monitoring the frequency of errors during training. Nevertheless, the optimal learning 
rule provides a lower bound for the generalization error, which can be achieved with an 
algorithm of the form (3). 

3.3. The perceptron learning rule 

As an example of a non-trivial weight function f we consider the perceptron learning rule 
[4,51, which can be obtained from (3) by the choice f (S, hJ) = O(K - h J S / Q ) .  K is called 



2658 M Biehl and H Schwarze 

Hebb rvle 

0.00 0.10 0.20 0.30 0.40 0.50 

?I 

Figure 3. Learning from queries for two values of 11. The full a w e s  compond to the Hebb 
rule with optimal weight decay, the bmken curves show ihe result for the optimal f procedure. 
Both approach the Same asymptotic generalization error. (Simulations as in figure 1.). 

the stability parameter. After a straightforward calculation the average over (7) yields the 
following coupled differential equations for p and Q 

We first consider the case of zero stability without weight decay to obtain a simple learning 
prescription without externally adjustable parameters. In this case, (20) reduces to 

dp 1 1 - p 2  
cos-'p- Ilp 

d e  6 Q Q2 

-=_ d[Qzl 1 c0s-l p - G Q ( 1 -  p ) .  
du z 

From the numerical solution of these equations we obtain the generalization error (figure 1) 
and its stationary value E& + 00) as shown in figure 2. It is remarkable that for small 0 
the perceptron rule has the same q-dependence as learning with an optimal weight function, 
except for a slightly greater prefactor 

E& + 00) % (4q)'I3/n % 0.51q'/3. (7.2) 

For larger drift parameters, on the other hand, this simple form of perceptron learning 
performs increasingly worse, even compared with the Hebb rule with an optimized weight 
decay. However, in contrast to both the Hebb rule with optimized weight decay and optimal 
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leaming,~ the perceptron learning rule does not require the setting of external parameters. 
Using the optimal weight decay (13) in the Hebb rule requires knowledge of the drift 
parameter. Alternatively, one could monitor the frequency of errors and adjust A online so 
as to minimize the observed frequency. The perceptron learning rule works without online 
adjustments or an apriori knowledge about the drift process, its simple form yields good 
results for both a stationary teacher and a slowly drifting rule. 

If we include a non-vanishing stability K # 0 and weight decay A > 0, we can 
numerically optimize the  asymptotic^ behaviour with respect to these parameters. From 
figure 2 we~see that this additional effort results in an improvement of the generalization 
error particularly for large q. 

3.4. Leaming from queries 

So far we have only considered the situation where the training examples are drawn from 
a given (uniform) distribution. More generally one might allow this distribution to vary in 
time as well [lo]. 

One special form of such a time dependence is the generation of training inputs, which 
carry-together with the teacher output-much information. As-an illustration one might 
think of a student who asks intelligent questions in order to speed up learning. Several 
such query strategies have been studied in the context of neural network learning [20-231. 
Clearly, the choice of a new example should take into account the current properties of the 
student network. For the simple perceptron, Kinzel and Rujan [21] suggest choosing training 
inputs perpendicular to the actual student vector J .  The corresponding output is completely 
uncertain for the learning network, and therefore the correct answer should provide much 
information about how to change the weights. 

Following this idea we consider examples.drawn randomly, but subject to the condition 
hJ = 0. This restriction can easily be incorporated into the analysis outlined above. Of 
course the weight function f in the learning algorithm (3) does not depend on hJ any more. 
Note that, for instance, the perceptron algorithm as defined in section 3.3 reduces to simple 
Hebbian learning in the query scheme. Averages in equation (8) are now to be performed 
over the probability distribution 

with P(hB, hJ) from equation (7). 

3.4.1. The Hebb rule. We consider the simple Hebb rule first. After inserting hJ = 0 and 
f = 1 in equation (3) and averaging over PqUq one obtains the differential equations 

which have to be solved under the initial conditions R(0) = 0 and Q(0) = 1. 
Again, for non-zero drift without weight decay, the residual error is +(a + CO) = 1/2, 

due to the assignment of an equal weight to all the examples and the unboundedness of 
Qz(a) = 1 +a. For positive A the solution of the second equation is 
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and the remaining equation for R can be solved numerically. The asymptotic normalized 
overlap is calculated exactly from the condition dR/da(or + 03) = 0 using Q2 + 1/2h. 
The result is 

M Biehl and H Schwarze 

pm = 2 / 3 3 >  0 (26) 

which is maximal for 

The residual error for very slowly drifting rules (tj + 0) is given by 

€,""'(or + 00) x G. (28) 

Obviously the query procedure improves generalization compared with learning from 
random examples. For small values of tj this advantage is particularly pronounced. In 
figure 2 e~p'(or + w) is plotted against the drift parameter, figure 3 shows the evolution of 
the generalization error for two different values of q. together with the results of simulations 
for a system of 200 neurons. 

3.4.2. Optimal f. The differential equations for Qz(or) and p(c& when learning from 
queries with a non-trivial weight function f and zero weight decay, read 

with the averages to be taken over P,,(hS). 

work of Kinouchi and Caticha [9] for the learning of a static rule. The result is 
Again, the calculation of the function f which maximizes dp/do is the same as in the 

Inseaing this weight function in equations (29) and performing the averages gives 

dp 1 1-p2 
tjP _=_-- 

der H p 

independent of Q. It is solved by 

The student vector approaches the teacher exponentially fast (note that this still holds for 
tj = 0 as pointed out in [9]). See figure 3 for a comparison with optimized Hebbian 
learning. However, both algorithms approach the same stationary value resulting in an 
identical asymptotic generalization error (28). Hence, the Hebb rule is already optimal with 
respect to the behaviour during the working phase. 
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4. Learning a deterministically varying rule 

In this section we study how deterministic changes in the target rule alter the above 
considerations. The worst drift process possible in our model is one where at each time 
step the target vector ‘moves away’ from the current student vector as far as possible. 
Clearly, any other drift, that produces the same~angle between consecutive teacher vectors 
(see below), would be easier to track for the student. In this sense, the following results 
provide lower bounds on the generalization error that can be achieved by an algorithm of 

At time step p we choose the new target vector such that it minimizes the overlap 
type (3). 

B”+’ . J” subject to the conditions 

BP+’ .BP = 1 - and B”+l .B’L+’ = 1, (33) 

Here 8 determines the size of the steps the teacher is allowed to perform. The solution to 
this problem is the linear combination 

where 

Inserting this vector B”+’ in equation (6), we see that 8 = S/N2 is thecorrect scaling by 
the same argument as in section 3. 

Obviously the drift parameter must be a factor of 0(1/N) smaller than in the previous 
case, the angle between B @  and its successor is only &/N for large N here. This is due to 
the fact that steps towards and away from the student were equally probable in the random 
walk. Another difference is that the above sequence of vectors B cannot be genera& ‘in 
advance’, it depends explicitly on the actual evolution of the student. One might think of 
B being chosen by an adversary [12] at each time step, obeying $e restrictions (33). 

In the h i t  N -+ 00 we obtain the following differential equations 

or, alternatively, 

Only the terms directly connected to the drift have changed compared with equations (8) 
and (9). Thus the analysis proceeds completely analogously to the procedure in the previous 
sections and we summarize and discuss the results in the following. In figure 4 the evolution 
of cg(ol) is shown for one specific value of the drift parameter, simulations confirm the 
results. Figure 5 shows the residual error against S for the different learning schemes; 
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Figure 4. Evolution of the generalization enor~for the learning of a deterministically drirling 
concept according to the worst case prescription with 6 = 0.005. The upper curves correspond 
to training wiul independently drawn examples, according to the Hebb algorithm with an optimal 
value of h, the simple perceptron procedure and the optimal choice of the weight function f .  
The lower two c u e s  show the generalization ermr of the optimized Hebb rule and the optimal 
f procedure when learning from queries. (Simulations as in figun: 1.). 

6 

Figure 5. Dependence of the asymptohc genetalimion e m r  on the parameter 6 in the worst 
c a ~ e  driff. The CUNW correspond to simple percepwn learning, the Hebb mle with optimal 
weight decay, and the procedure with the optimal weight function. The full c u e  is for the 
learning from queries. 

4.1. Random examples 

4.1.1. The Hebb rule. Inserting f = 1 in equations (36)-(38) and performing the averages 
over the distribution (7), one finds that the optimized asymptotic overlap is given by the 
real solution of the cubic equation 

which is achieved when using the corresponding weight decay 
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For very small drift parameters we find 

4.1.2. Optimal f procedure and perceptron algorithm. The optimal choice of a weight 
function f is not modified compared with section 3.2, because fopt in (17) does not explicitly 
depend on the drift process. In the limit S + 0 we find a residual generalization error 

with A from equation (19). 

limit 
Perceptron learning with zero stability (f = @ ( - h ~ s / Q ) .  A = 0) gives in the same 

which is already optimal with respect to the &-dependence. Figure 4 shows the evolution 
of the generalization error for a  given' drift parameter and in figure 5 the dependence of 
E& + 03) on 6 is plotted. 

For 6 2 0.2~the simple perceptron even gives asymptotic values for cg > 1/2, which 
is, in fact, worse than random guessing. Similar effects can be observed for the Hebb 
algorithm with suboptimal weight decay. This is merely an artifact of our specification of 
the drift process: the minimum of J . B subject to (33) can be negative for large enough S. 
This is somewhat unphysical: a 'clever' student could 'wait' until p = -1, then change the 
signs of all weights and generalize perfectly. One could include an additional restriction 
J . B 0 in the definition of the drift, but we are mainly interested in the results for small 
6, where this problem does not ,occur. 

Helmbold and Long [Ill recently derived, for general rules of a certain complexity 
(Vapnik-Chervonenkis-dimension dvc [I]), lower bounds on the generalization error given 
only the amount of drift. Apart from constant factors, equations (42) and (43) coincide with 
their result for the linearly separable case (dvc = N ) .  For slow drifts they find the relation 

This inequality holds for any possible learning procedure and arbitrary types of drift. 
Consequently, the basic dependence on the drift parameter for the considered evolution of 
B could not be improved by allowing more complicated schemes than the online algorithm 
of type (3) for the learning from random examples. 

Kuh et al [ 121 find a similar relation for a two-dimensional ( N  = 2) perceptron tracking a 
drifting rule. Apparently, the structure of our results does not depend on the thermodynamic 
limit N + 00, but seems to hold more generally. 
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4.2. Queries 

Training with examples that satisfy the condition h, = 0 leads to a further improvement 
in the asymptotic generalization enor. Asking intelligent questions allows us to exceed the 
bound (44), which was obtained for a tixed distribution of examples. As in the case of a 
random drift process, both the Hebb rule with optimal weight decay (Aopt = 2nS) and the 
optimal f procedure (section 3.2) yield the same asymptotic value. Here we find 

which gives an error 

in the limit 6 -+ 0, see figure 5. 

5. Summary 

We have studied the learning of a time-dependent rule in a single-layer neural network for 
two different drift processes of the target vector. For various online learning algorithms 
we investigated the generalization performance using both randomly selected examples and 
examples generated by a query strategy. None of the algorithms is able to learn the drifting 
rules perfectly. However, introducing the effect of forgetting allows us to track the rules 
within certain error margins. This was demonstrated by the use of weight decay and explicit 
weight functions in the different leaming algorithms. The simple perceptron learning rule 
was found to work without adjusting parameters and thus without prior knowledge about 
the drift process. Remarkably, for small drifts its generalization error is already optimal up 
to a constant. 

For the deterministic worst-case drift of section 4 the generalization error of the 
perceptron learning rule and the optimal f procedure reaches, apart from prefactors, the 
lower bounds found by Helmbold and Long for any algorithm [I I]. Hence, the online 
learning scheme studied here provides an efficient tool for the tracking of drifting concepts. 
For its worst-case behaviour we do not expect a considerable improvement from using 
memory-based algorithms [U], since they also have to satisfy the bounds of [Ill.  However, 
for a general drift process a memory-based prescription may be useful, e.g. to detect a 
deterministic drift component along a given direction of phase space. 

Compared with algorithms using randomly drawn training examples, the generalization 
performance can be further improved by generating examples according to a query strategy. 
The generalization ability achieved by such a strategy was found to exceed the bounds for 
learning rules relying on randomly chosen examples. 

It might be interesting, and in a way more realistic, to consider deterministically 
varying concepts, where the drift is along a certain direction on the N-dimensional sphere. 
Obviously, the trackability of such a rule should somewhat interpolate between the random 
drift and the worst case. 

Furthermore one might consider the presentation of patterns which are semantically or 
spatially correlated [24,25]; the possible outcome of our theory for this case is unclear. 
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Note added inpro"$ After submission bf this paper we received a preprint by Kinouchi and Caticha [26]. in which 
basically the same resulrs obtained for the randomly drifting rule. Furthermore the authors suggest a method 
for estimating and monitoring the current generalization ability of the student. 

References 

Hertz J A. Kmgh A and Palmer R G 1991 Intmductim to the Theory of Neural Compulation (Redwood 

Seung U S, Sompolinsky Hand Tishby N, 1992 Phys. Rev. A 45 6056 
Watkin T L H, Rau A and Biehl M 1993 The statistical mechanics of learning a rule Rev. Mod. Phys. 
Rosenblatt F 1962 Principles of Neurodynamics (New York: Spartan) 
Minsky M L and Papert S 1969 Perceptrons (Cambridge, Ma: MIT Press) 
Vallet F 1989 Europhys. Lett. 9 315 
@per M, Kinzel W. Kleinz J and Nehl R 1990 J.  Phys A: Math. Gen. 2) U S 1  
Watkin T L H 1992 Preprint Oxford University 
Kinouchi 0 and Caticha N 1992 J. Pkys. A: Molh Gen. 25 6243 
Heskes T M and Kappen B 1992 Phys. Rev. A 45 8885 
Helmbold D P and Long P M 1991 Proc. Fourth Ann. Worhhop on COmpUfatiOMl Learning Theory ed 

Kuh A, Petsche Th and Rivest R L 1992 Advances in neural Infomation Processing Systems III ed 

Biehl M and Schwasze H 1992 Ewophys. Len. 20 733 
Hebb D 0 1949 The Organization of Behavior (New York Wiley) 
Derrida B and Nadal J-P 1987 J. Star, Phys. 49 993 
Kmgh A and Hertz J A 1992 Advances in Neural Informtion Processing System N ed J E Moody, 

S J Hanson and R Lippmann (San Mateo: M o m  Kaufmann) 
Mezard M, Nadal I-P and Toulouse G 1986 J. Physique 47 1457 
van Hemmen 1 L, Keller G and Kiihn R I988 Europhys. ktt. 5 663 
Kinzel W and ODW M 1991 Mod& ofNewol  Nerworkr ed E Domanv. J L van Hemmen and K Schulten 

City, C A  Addison-Wesley) 

M K W m u t h  and L G Valiant (San Mateo: Morgan Kaufmann) 

R P Lippmann, J E Moody and D S Toureaky (San Mateo: Morgan Kaufmann) 

.. 
(Berlin: Springer) 

Baum E B 1991 IEEE Trans. on Neural Nehvork 2 5 
K i m 1  Wand Rmjan P 1990 Eumphys. Lett. 13 473 
Watkin T L H and Rau A 1992 J. Pkys. A: Math Gen 25 113 
Seung H S, Opper M and Sompolinsky H 1992 Pmc. F p h  Ann. ACM Workhop on Computational barning 

Monasson R 1992 J. Phys. A: Math. Gen. 25 3701 
Taxkowski W and Lewenstein M 1992 Phys. Rev. A 46 2138 
Kinouchi 0 and Caticha N 1992 PrepriN Universidade SHo Paul0 

Theory (New York. ACM) 


